Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Comput Struct Biotechnol J ; 20: 2212-2222, 2022.
Article in English | MEDLINE | ID: covidwho-2239153

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide as a severe pandemic and caused enormous global health and economical damage. Since December 2019, more than 197 million cases have been reported, causing 4.2 million deaths. In the settings of pandemic it is an urgent necessity for the development of an effective COVID-19 treatment. While in-vitro screening of hundreds of antibodies isolated from convalescent patients is challenging due to its high cost, use of computational methods may provide an attractive solution in selecting the top candidates. Here, we developed a computational approach (SARS-AB) for binding prediction of spike protein SARS-CoV-2 with monoclonal antibodies. We validated our approach using existing structures in the protein data bank (PDB), and demonstrated its prediction power in antibody-spike protein binding prediction. We further tested its performance using antibody sequences from the literature where crystal structure is not available, and observed a high prediction accuracy (AUC = 99.6%). Finally, we demonstrated that SARS-AB can be used to design effective antibodies against novel SARS-CoV-2 mutants that might escape the current antibody protections. We believe that SARS-AB can significantly accelerate the discovery of neutralizing antibodies against SARS-CoV-2 and its mutants.

2.
Front Immunol ; 13: 891816, 2022.
Article in English | MEDLINE | ID: covidwho-1969020

ABSTRACT

An important number of studies have been conducted on the potential association between human leukocyte antigen (HLA) genes and COVID-19 susceptibility and severity since the beginning of the pandemic. However, case-control and peptide-binding prediction methods tended to provide inconsistent conclusions on risk and protective HLA alleles, whereas some researchers suggested the importance of considering the overall capacity of an individual's HLA Class I molecules to present SARS-CoV-2-derived peptides. To close the gap between these approaches, we explored the distributions of HLA-A, -B, -C, and -DRB1 1st-field alleles in 142 Iranian patients with COVID-19 and 143 ethnically matched healthy controls, and applied in silico predictions of bound viral peptides for each individual's HLA molecules. Frequency comparison revealed the possible predisposing roles of HLA-A*03, B*35, and DRB1*16 alleles and the protective effect of HLA-A*32, B*58, B*55, and DRB1*14 alleles in the viral infection. None of these results remained significant after multiple testing corrections, except HLA-A*03, and no allele was associated with severity, either. Compared to peptide repertoires of individual HLA molecules that are more likely population-specific, the overall coverage of virus-derived peptides by one's HLA Class I molecules seemed to be a more prominent factor associated with both COVID-19 susceptibility and severity, which was independent of affinity index and threshold chosen, especially for people under 60 years old. Our results highlight the effect of the binding capacity of different HLA Class I molecules as a whole, and the more essential role of HLA-A compared to HLA-B and -C genes in immune responses against SARS-CoV-2 infection.


Subject(s)
COVID-19 , Histocompatibility Antigens Class I , Viral Proteins , COVID-19/genetics , HLA-A Antigens/genetics , HLA-A Antigens/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Iran , Middle Aged , Protein Binding , SARS-CoV-2 , Viral Proteins/metabolism
3.
Infect Genet Evol ; 99: 105236, 2022 04.
Article in English | MEDLINE | ID: covidwho-1670896

ABSTRACT

SARS-CoV-2 variants of concern have emerged since the COVID-19 outburst, notably the lineages detected in the UK, South Africa, and Brazil. Their increased transmissibility and higher viral load put them in the spotlight. Much has been investigated on the ability of those new variants to evade antibody recognition. However, little attention has been given to pre-existing and induced SARS-CoV-2-specific CD8+ T cell responses by new lineages. In this work, we predicted SARS-CoV-2-specific CD8+ T cell epitopes from the main variants of concern and their potential to trigger or hinder CD8+ T cell response by using HLA binding and TCR reactivity in silico predictions. Also, we estimated the population's coverage for different lineages, which accounts for the ability to present a set of peptides based on the most frequent HLA alleles of a given population. We considered binding predictions to 110 ccClass I HLA alleles from 29 countries to investigate differences in the fraction of individuals expected to respond to a given epitope set from new and previous lineages. We observed a higher population coverage for the variant detected in the UK (B.1.1.7), and South Africa (B.1.351), as well as for the Brazilian P.1 lineage, but not P.2, compared to the reference lineage. Moreover, individual mutations such as Spike N501Y and Nucleocapsid D138Y were predicted to have an overall stronger affinity through HLA-I than the reference sequence while Spike E484K shows signs of evasion. In summary, we provided evidence for the existence of potentially immunogenic and conserved epitopes across new SARS-CoV-2 variants, but also mutant peptides exhibiting diminished or abolished HLA-I binding. It also highlights the augmented population coverage for three new lineages. Whether these changes imply more T cell reactivity or potential to evade from CD8+ T cell responses requires experimental verification.


Subject(s)
COVID-19 , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte/genetics , Humans , Immunity , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
Cell ; 184(7): 1865-1883.e20, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1071139

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Understanding of the RNA virus and its interactions with host proteins could improve therapeutic interventions for COVID-19. By using icSHAPE, we determined the structural landscape of SARS-CoV-2 RNA in infected human cells and from refolded RNAs, as well as the regulatory untranslated regions of SARS-CoV-2 and six other coronaviruses. We validated several structural elements predicted in silico and discovered structural features that affect the translation and abundance of subgenomic viral RNAs in cells. The structural data informed a deep-learning tool to predict 42 host proteins that bind to SARS-CoV-2 RNA. Strikingly, antisense oligonucleotides targeting the structural elements and FDA-approved drugs inhibiting the SARS-CoV-2 RNA binding proteins dramatically reduced SARS-CoV-2 infection in cells derived from human liver and lung tumors. Our findings thus shed light on coronavirus and reveal multiple candidate therapeutics for COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning , RNA, Viral , RNA-Binding Proteins/antagonists & inhibitors , SARS-CoV-2 , Animals , Cell Line , Chlorocebus aethiops , Deep Learning , Humans , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA-Binding Proteins/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/genetics
5.
Genome Med ; 12(1): 70, 2020 08 13.
Article in English | MEDLINE | ID: covidwho-714063

ABSTRACT

BACKGROUND: The ongoing COVID-19 pandemic has created an urgency to identify novel vaccine targets for protective immunity against SARS-CoV-2. Early reports identify protective roles for both humoral and cell-mediated immunity for SARS-CoV-2. METHODS: We leveraged our bioinformatics binding prediction tools for human leukocyte antigen (HLA)-I and HLA-II alleles that were developed using mass spectrometry-based profiling of individual HLA-I and HLA-II alleles to predict peptide binding to diverse allele sets. We applied these binding predictors to viral genomes from the Coronaviridae family and specifically focused on T cell epitopes from SARS-CoV-2 proteins. We assayed a subset of these epitopes in a T cell induction assay for their ability to elicit CD8+ T cell responses. RESULTS: We first validated HLA-I and HLA-II predictions on Coronaviridae family epitopes deposited in the Virus Pathogen Database and Analysis Resource (ViPR) database. We then utilized our HLA-I and HLA-II predictors to identify 11,897 HLA-I and 8046 HLA-II candidate peptides which were highly ranked for binding across 13 open reading frames (ORFs) of SARS-CoV-2. These peptides are predicted to provide over 99% allele coverage for the US, European, and Asian populations. From our SARS-CoV-2-predicted peptide-HLA-I allele pairs, 374 pairs identically matched what was previously reported in the ViPR database, originating from other coronaviruses with identical sequences. Of these pairs, 333 (89%) had a positive HLA binding assay result, reinforcing the validity of our predictions. We then demonstrated that a subset of these highly predicted epitopes were immunogenic based on their recognition by specific CD8+ T cells in healthy human donor peripheral blood mononuclear cells (PBMCs). Finally, we characterized the expression of SARS-CoV-2 proteins in virally infected cells to prioritize those which could be potential targets for T cell immunity. CONCLUSIONS: Using our bioinformatics platform, we identify multiple putative epitopes that are potential targets for CD4+ and CD8+ T cells, whose HLA binding properties cover nearly the entire population. We also confirm that our binding predictors can predict epitopes eliciting CD8+ T cell responses from multiple SARS-CoV-2 proteins. Protein expression and population HLA allele coverage, combined with the ability to identify T cell epitopes, should be considered in SARS-CoV-2 vaccine design strategies and immune monitoring.


Subject(s)
Coronavirus Infections/immunology , Epitopes/immunology , HLA Antigens/immunology , Pneumonia, Viral/immunology , T-Lymphocytes/immunology , Viral Vaccines/immunology , Alleles , Antibody Affinity , COVID-19 , COVID-19 Vaccines , Computational Biology , Coronavirus Infections/genetics , Coronavirus Infections/prevention & control , Epitopes/chemistry , Epitopes/genetics , Genome, Viral , HLA Antigens/chemistry , HLA Antigens/genetics , Humans , Immunogenicity, Vaccine , Mass Spectrometry , Pandemics , Viral Vaccines/chemistry , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL